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We design an optimal strategy for investment in a portfolio of assets subject to a multi-
plicative Brownian motion. The strategy provides the maximal typical long-term growth
rate of investor’s capital. We determine the optimal fraction of capital that an investor
should keep in risky assets as well as weights of different assets in an optimal portfolio.
In this approach both average return and volatility of an asset are relevant indicators
determining its optimal weight. Our results are particularly relevant for very risky assets
when traditional continuous-time Gaussian portfolio theories are no longer applicable.

1. Introduction

The simplest version of the problem we are going to address in this manuscript

is rather easy to formulate. Imagine that you are an investor with some starting

capital, which you can invest in just one risky asset. You decided to use the following

simple strategy: you always maintain a given fraction 0 < r < 1 of your total current

capital invested in this asset, while the rest (given by the fraction 1− r) you wisely

keep in cash. You select a unit of time (say a week, a month, a quarter, or a year,

depending on how closely you follow your investment, and what transaction costs

are involved) at which you check the asset’s current price, and sell or buy some

shares of this asset. By this transaction you adjust the current money equivalent of

your investment to the above pre-selected fraction of your total capital.

The question we are interested in is: which investment fraction provides the

optimal typical long-term growth rate of investor’s capital? By typical we mean

that this growth rate occurs at large-time horizon in majority of realizations of the

multiplicative process. By extending time-horizon one can make this rate to oc-

cur with probability arbitrary close to one. Contrary to the traditional economics

approach, where the expectation value of an artificial “utility function” of an in-

vestor is optimized, the optimization of a typical growth rate does not contain any

ambiguity.
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In this work we also assume that during the timescale, at which the investor

checks and readjusts his asset’s capital to the selected investment fraction, the

asset’s price changes by a random factor, drawn from some probability distribution,

and uncorrelated from price dynamics at earlier intervals. In other words, the price

of an asset experiences a multiplicative random walk with some known probability

distribution of steps. This assumption is known to hold in real financial markets

beyond a certain time scale [1, 2]. Contrary to continuum theories popular among

economists [3] our approach is not limited to Gaussian distributed returns: indeed,

we were able to formulate our strategy for a general probability distribution of

returns per capital (elementary steps of the multiplicative random walk).

Our purpose here is to illustrate the essential framework through simplest ex-

amples. Thus risk-free interest rate, asset’s dividends, and transaction costs are

ignored (when volatility is large they are indeed negligible). However, the task of

including these effects in our formalism is rather straightforward.

The quest of finding a strategy, which optimizes the long-term growth rate of

the capital is by no means new: indeed it was first discussed by Daniel Bernoulli

in about 1730 in connection with the St. Petersburg game [4]. In the early days

of information sciences, Shannon [5] had considered the application of the concept

of information entropy in designing optimal strategies in such games as gambling.

Working from the foundations of Shannon, Kelly has specifically designed an op-

timal gambling strategy in placing bets [6], when a gambler has some incomplete

information about the winning outcome (a “noisy information channel”). In mod-

ern day finance, especially the investment in very risky assets is no different from

gambling. The point Shannon and Kelly wanted to make is that, given that the

odds are slightly in your favor albeit with large uncertainty, the gambler should

not bet his whole capital at every time step. On the other hand, he would achieve

the biggest long-term capital growth by betting some specially optimized fraction

of his whole capital in every game. This cautious approach to investment is rec-

ommended in situations when the volatility is very large. For instance, in many

emergent markets the volatility is huge, but they are still swarming with investors,

since the long-term return rate in some cautious investment strategy is favorable.

Later on Kelly’s approach was expanded and generalized in the works of Breiman

[8]. Our results for multi-asset optimal investment are in agreement with his exact

but non-constructive equations. In some special cases, Merton and Samuelson [3]

have considered the problem of portfolio optimization, when the underlying asset is

subject to a multiplicative continuous Brownian motion with Gaussian price fluctu-

ations. Overall, we feel that the topic of optimal long-term investment has not been

adequately exploited, and many interesting consequences are yet to be revealed.

The plan of this paper is as follows: in Sec. 2 we determine the optimal invest-

ment fraction in an (unrealistic) situation when an investor is allowed to invest in

only one risky asset. Section 3 generalizes these results for a more realistic case

when an investor can keep his capital in a multi-asset portfolio. In this case we

determine the optimal weights of different assets in this portfolio.
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2. Optimal Investment Fraction for One Asset

We first consider a situation, when an investor can spend a fraction of his capital

to buy shares of just one risky asset. The rest of his money he keeps in cash.

Generalizing Kelly [6], we consider the following simple strategy of the investor: he

regularly checks the asset’s current price p(t), and sells or buys some asset shares in

order to keep the current market value of his asset holdings a pre-selected fraction

r of his total capital. These readjustments are made periodically at a fixed interval,

which we refer to as readjustment interval, and select it as the discrete unit of time.

In this work the readjustment time interval is selected once and for all, and we do

not attempt optimization of its length.

We also assume that on the time-scale of this readjustment interval the asset

price p(t) undergoes a geometric Brownian motion:

p(t+ 1) = eη(t)p(t) , (2.1)

i.e. at each time step the random number η(t) is drawn from some probability

distribution π(η), and is independent of it’s value at previous time steps. This

exponential notation is particularly convenient for working with multiplicative noise,

keeping the necessary algebra at minimum. Under these rules of dynamics the

logarithm of the asset’s price, ln p(t), performs a random walk with an average drift

v = 〈η〉 and a dispersion D = 〈η2〉 − 〈η〉2.
It is easy to derive the time evolution of the total capital W (t) of an investor,

following the above strategy:

W (t+ 1) = (1− r)W (t) + rW (t)eη(t) . (2.2)

Let us assume that the value of the investor’s capital at t = 0 is W (0) = 1.

The evolution of the expectation value of the expectation value of the total capital

〈W (t)〉 after t time steps is obviously given by the recursion 〈W (t+ 1)〉 = (1− r+

r〈eη〉)〈W (t)〉. When 〈eη〉 > 1, at first thought the investor should invest all his

money in the risky asset. Then the expectation value of his capital would enjoy

an exponential growth with the fastest growth rate. However, it would be totally

unreasonable to expect that in a typical realization of price fluctuations, the investor

would be able to attain the average growth rate determined as vavg = d〈W (t)〉/dt.
This is because the main contribution to the expectation value 〈W (t)〉 comes from

exponentially unlikely outcomes, when the price of the asset after a long series of

favorable events with η > 〈η〉 becomes exponentially big. Such outcomes lie well

beyond reasonable fluctuations of W (t), determined by the standard deviation
√
Dt

of lnW (t) around its average value 〈lnW (t)〉 = 〈η〉t. For the investor who deals

with just one realization of the multiplicative process it is better not to rely on

such unlikely events, and maximize his gain in a typical outcome of a process. To

quantify the intuitively clear concept of a typical value of a random variable x,

we define xtyp as a median [9] of its distribution, i.e xtyp has the property that

Prob(x > xtyp) = Prob(x < xtyp) = 1/2. In a multiplicative process (2.2) with
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r = 1, W (t + 1) = eη(t)W (t), one can show that Wtyp(t) — the typical value of

W (t) — grows exponentially in time: Wtyp(t) = e〈η〉t at a rate vtyp = 〈η〉, while

the expectation value 〈W (t)〉 also grows exponentially as 〈W (t)〉 = 〈eη〉t, but at

a faster rate given by vavg = ln〈eη〉. Notice that 〈lnW (t)〉 always grows with the

typical growth rate, since those very rare outcomes when W (t) is exponentially big,

do not make significant contribution to this average.

The question we are going to address is: which investment fraction r provides the

investor with the best typical growth rate vtyp of his capital. Kelly [6] has answered

this question for a particular realization of multiplicative stochastic process, where

the capital is multiplied by 2 with probability q > 1/2, and by 0 with probability

p = 1 − q. This case is realized in a gambling game, where betting on the right

outcome pays 2:1, while you know the right outcome with probability q > 1/2. In

our notation this case corresponds to η being equal to ln 2 with probability q and

−∞ otherwise. The player’s capital in Kelly’s model with r = 1 enjoys the growth

of expectation value 〈W (t)〉 at a rate vavg = ln 2q > 0. In this case it is however

particularly clear that one should not use maximization of the expectation value of

the capital as the optimum criterion. If the player indeed bets all of his capital at

every time step, sooner or later he will lose everything and would not be able to

continue to play. In other words, r = 1 corresponds to the worst typical growth of

the capital: asymptotically the player will be bankrupt with probability 1. In this

example it is also very transparent, where the positive average growth rate comes

from: after T rounds of the game, in a very unlikely (Prob = qT ) event that the

capital was multiplied by 2 at all times (the gambler guessed right all the time!),

the capital is equal to 2T . This exponentially large value of the capital outweighs

exponentially small probability of this event, and gives rise to an exponentially

growing average. This would offer condolence to a gambler who lost everything.

In this chapter we generalize Kelly’s arguments for arbitrary distribution π(η).

As we will see this generalization reveals some hidden results, not realized in Kelly’s

“betting” game. In a previous publication [7], Galluccio and one of us have already

considered generalizing Kelly’s theory, where an explicit solution is found for a

two-asset model. There it was realised that the typical return and the Lyapunov

exponent are equivalent. However, in our present study, we examine under what

conditions the Kelly optimization is possible and how to proceed with the general

multi-asset case. As we learned above, the growth of the typical value of W (t), is

given by the drift of 〈lnW (t)〉 = vtypt, which in our case can be written as

vtyp(r) =

∫
dη π(η) ln(1 + r(eη − 1)) . (2.3)

One can check that vtyp(0) = 0, since in this case the whole capital is in the form

of cash and does not change in time. In another limit one has vtyp(1) = 〈η〉, since

in this case the whole capital is invested in the asset and enjoys it’s typical growth

rate (〈η〉 = −∞ for Kelly’s case). Can one do better by selecting 0 < r < 1? To

find the maximum of vtyp(r) one differentiates (2.3) with respect to r and looks for
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a solution of the resulting equation: 0 = v′typ(r) =
∫
dη π(η) (eη−1)/(1+r(eη−1))

in the interval 0 ≤ r ≤ 1. If such a solution exists, it is unique since v′′typ(r) =

−
∫
dη π(η) (eη − 1)2/(1 + r(eη − 1))2 < 0 everywhere. The values of the v′typ(r)

at 0 and 1 are given by v′typ(0) = 〈eη〉 − 1, and v′typ(1) = 1 − 〈e−η〉. One has to

consider three possibilities:

(1) 〈eη〉 < 1. In this case v′typ(0) < 0. Since v′′typ(r) < 0, the maximum of vtyp(r) is

realized at r = 0 and is equal to 0. In other words, one should never invest in

an asset with negative average return per capital 〈eη〉 − 1 < 0.

(2) 〈eη〉 > 1 , and 〈e−η〉 > 1. In this case v′typ(0) > 0, but v′typ(1) < 0 and the

maximum of v(r) is realized at some 0 < r < 1, which is a unique solution to

v′typ(r) = 0. The typical growth rate in this case is always positive (because you

could have always selected r = 0 to make it zero), but not as big as the average

rate ln〈eη〉, which serves as an unattainable ideal limit. An intuitive under-

standing of why one should select r < 1 in this case comes from the following

observation: the condition 〈e−η〉 > 1 makes 〈1/p(t)〉 to grow exponentially in

time. Such an exponential growth indicates that the outcomes with very small

p(t) are feasible and give dominant contribution to 〈1/p(t)〉. This is an indicator

that the asset price is unstable and one should not trust his whole capital to

such a risky investment.

(3) 〈eη〉 > 1 , and 〈e−η〉 < 1. This is a safe asset and one can invest his whole capital

in it. The maximum vtyp(r) is achieved at r = 1 and is equal to vtyp(1) = ln〈η〉.
A simple example of this type of asset is one in which the price p(t) with equal

probabilities is multiplied by 2 or by a = 2/3. As one can see this is a marginal

case in which 〈1/p(t)〉 =const. For a < 2/3 one should invest only a fraction

r < 1 of his capital in the asset, while for a ≥ 2/3 the whole sum could be

trusted to it. The specialty of the case with a = 2/3 cannot be guessed by just

looking at the typical and average growth rates of the asset! One has to go and

calculate 〈e−η〉 to check if 〈1/p(t)〉 diverges. This “reliable” type of asset is a

new feature of the model with a general π(η). It is never realized in Kelly’s

original model, which always has 〈η〉 = −∞, so that it never makes sense to

gamble the whole capital every time.

An interesting and somewhat counterintuitive consequence of the above results

is that under certain conditions one can make his capital grow by investing in asset

with a negative typical growth rate 〈η〉 < 0. Such asset certainly loses value, and

its typical price experiences an exponential decay. Any investor bold enough to

trust his whole capital in such an asset is losing money with the same rate. But

as long as the fluctuations are strong enough to maintain a positive average return

per capital 〈eη〉 − 1 > 0) one can maintain a certain fraction of his total capital

invested in this asset and almost certainly make money! A simple example of such

mind-boggling situation is given by a random multiplicative process in which the

price of the asset with equal probabilities is doubled (goes up by 100%) or divided

by 3 (goes down by 66.7%). The typical price of this asset drifts down by 18%
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each time step. Indeed, after T time steps one could reasonably expect the price of

this asset to be ptyp(T ) = 2T/23−T/2 = (
√

2/3)T ' 0.82T . On the other hand, the

average 〈p(t)〉 enjoys a 17% growth 〈p(t + 1)〉 = 7/6 〈p(t)〉 ' 1.17〈W (t)〉. As one

can easily see, the optimum of the typical growth rate is achieved by maintaining a

fraction r = 1/4 of the capital invested in this asset. The typical rate in this case

is a meager
√

25/24 ' 1.02, meaning that in the long run one almost certainly gets

a 2% return per time step, but it is certainly better than losing 18% by investing

the whole capital in this asset.

The temporal evolution of another example is shown in the Fig. 1, where a

risky asset varies daily by +30% or -24.4% with equal chance, this is not unlike

daily variation of some “red chips” quoted in Hong Kong or some Russian compa-

nies quoted on the Moscow Stock Exchange. In this example, the stock is almost

certainly doomed: in the realization shown on Fig. 1 in four years the price of one

share went down by a factor 500, it was practically wiped out. At the same time the

investor maintaining the optimal ' 38% investment fraction profited handsomely,

making more than 500 times of his starting capital! It is all the more remarkable

that this profit is achieved without any insider information but only by dynamically
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Fig. 1. Temporal evolution of the stock and the optimizing investor’s capital. The time units can
be interpreted as days and the total period (1000 days) is about 4 years. During this period the
doomed stock performed very badly, whereas our investor made huge profit from investing in it
dynamically with r ' 38%. Not only the optimal strategy performs better, it also has much less
volatility. Clearly if one adopts the “buy-and-hold” strategy the investment would vanish together
with the company.
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managing his investment in such a bad stock. It is unrealistic in this hypothetical

case, since we assume that the investment is negligibly small campared to the com-

pany’s capitalisation so that the investor’s impact can be ignored. This would no

longer be the case if the stock goes dramatically down and investor’s profit dramat-

ically goes up. Somewhere down the road the investor will find himself one of the

major players of that doomed stock, market impact then prevents him from ribbing

off further profit and he has to either quit for another target or vanish together.

Of course the properties of a typical realization of a random multiplicative

process are not fully characterized by the drift vtyp(r)t in the position of the

center of mass of P (h, t), where h(t) = lnW (t) is a logarithm of the wealth

of the investor. Indeed, asymptotically P (h, t) has a Gaussian shape P (h, t) =
1√

2πD(r)t
exp(− (h−vtyp(r)t)2

2D(r)t ), where vtyp(r) is given by Eq. (2.3). One needs to

know the dispersion D(r) to estimate
√
D(r)t, which is the magnitude of charac-

teristic deviations of h(t) away from its typical value htyp(t) = vtypt. At the infinite

time horizon t → ∞, the process with the biggest vtyp(r) will certainly be prefer-

able over any other process. This is because the separation between typical values

of h(t) for two different investment fractions r grows linearly in time, while the

span of typical fluctuations grows only as a
√
t. However, at a finite time horizon

the investor should take into account both vtyp(r) and D(r) and decide what he

prefers: moderate growth with small fluctuations or faster growth with still bigger

fluctuations. To quantify this decision one needs to introduce an investor’s “utility

function” which we will not attempt in this work. The most conservative players

are advised to always keep their capital in cash, since with any other arrangement

the fluctuations will certainly be bigger. As a rule one can show that the dispersion

D(r) =
∫
π(η) ln2[1+ r(eη−1)]dη− v2

typ monotonically increases with r. Therefore,

among two solutions with equal vtyp(r) one should always select the one with a

smaller r, since it would guarantee smaller fluctuations.

We proceed with deriving analytic results for the optimal investment fraction r

in a situation when fluctuations of asset price during one readjustment period (one

step of the discrete dynamics) are small. This approximation is usually justified for

developed markets, if the investor sells and buys asset to maintain his optimal ratio

on let’s say monthly basis. Indeed, the month to month fluctuations in, for example,

Dow-Jones Industrial Average i) to a good approximation are uncorrelated random

numbers; ii) seldom rise above few percent, so that the assumption that η(t) � 1

is justified.

Here it is more convenient to switch to the standard notation. It is customary

to use the random variable

Λ(t) =
p(t+ 1)− p(t)

p(t)
= eη(t) − 1 , (2.4)

which is referred to as return per unit capital of the asset. The properties of a

random multiplicative process are expressed in terms of the average return per
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capital α = 〈Λ〉 = 〈eη〉 − 1, and the volatility (standard deviation) of the return

per capital σ =
√
〈Λ2〉 − 〈Λ〉2. In our notation α = 〈eη〉 − 1 is determined by the

average and not typical growth rate of the process. For η � 1, α ' v+D/2+ v2/2,

while the volatility σ is related to D ( the dispersion of η) through σ '
√
D.

Expanding Eq. (2.3) up to the second order in Λ = eη − 1 one gets: vtyp '
〈r(eη − 1)− r2(eη − 1)2〉 = αr − (σ2 + α2)r2/2. The optimal r is given by

ropt =
α

α2 + σ2
. (2.5)

If the above formula prescribes ropt > 1, the investor is advised to trust his whole

capital to this asset. We remind you that in this paper the risk-free return per capital

is set to zero (investor keeps the rest of his capital in cash). In a more realistic case,

when a risk-free bank deposit brings a return p during a single readjustment interval,

the formula for the optimal investment ratio should be generalized to

ropt =
α− p
α2 + σ2

. (2.6)

In a hypothetical case discussed by Merton [3], when asset’s price follows a

continuous multiplicative random walk (i.e. price fluctuations are uncorrelated at

the smallest time scale) and the investor is committed to adjust his investment

ratio on a continuous basis, one should use infinitesimal quantities α → αdt and

σ2 → σ2dt. Under these circumstances the term α2dt2, being second order in

infinitesimal time increment dt, should be dropped from the denominator. Then

one recovers an optimal investment fraction for “logarithmic utility” derived by

Merton [3].

Asset price fluctuations encountered in developed financial markets have rela-

tively large average returns and small volatilities, so that the optimal investment

fraction into any given asset ropt
i is almost always bigger than 1. For instance

the data for average annual return and volatility of Dow-Jones index in 1954-

1963 [10] are αDJ = 16%, σDJ = 20%, while the average risk-free interest rate

is p = 3%. This suggests that for an investor committed to yearly readjustment

of his asset holdings to the selected ratio, the optimal investment ratio in Dow-

Jones portfolio is rDJ = (αDJ − p)/(σ2
DJ + α2

DJ ) = 1.98 > 1. On the other

hand the investor ready to readjust his stock holdings every month should use

αmonthly ' α/12 and σmonthly ' σ/
√

12. For him the optimal investment fraction

would be rmonthly
DJ = (αDJ/12−p/12)/(σ2

DJ/12+(αDJ/12)2) ' 3.09. In both cases,

given no other alternatives the investor interested in a long-term capital growth is

advised to trust his whole capital to Dow-Jones portfolio and enjoy a typical annual

return α−σ2/2 = 14%, which is 2% smaller than the average annual return of 16%

but significantly bigger than the risk-free return of 3%.

3. Optimization of Multi-Asset Portfolio

We proceed by generalizing the results of a previous section to a more realistic

situation, where the investor can keep a fraction of his total capital in a portfolio
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composed of N risky assets. The returns per unit capital of different assets are

defined as Λi(t) = pi(t+1)−pi(t)
pi(t)

= eηi − 1. Each asset is characterized by an average

return per capital αi = 〈eηi〉 − 1, and volatility σi =
√
〈e2ηi〉 − 〈eηi〉2. As in the

single asset case, an investor has decided to maintain a given fraction ri of his

capital invested in ith asset, and to keep the rest in cash. His goal is to maximize

the typical growth rate of his capital by selecting the optimal set of ri. The explicit

expression for the typical rate under those circumstances is given by

vtyp(r1, r2 . . . rN ) =

〈
ln

[
1 +

N∑
i=1

ri(e
ηi − 1)

]〉
. (3.7)

The task of finding an analytical solution for the global maximum of this expression

seems hopeless. We can, however, expand the logarithm in Eq. (3.7), assuming that

all returns Λi = eηi − 1 are small. Then to a second order one gets: vtyp =∑
i αiri −

∑
i,j Kijrirj/2, where Kij is a covariance matrix of returns, defined by

Kij = 〈ΛiΛj〉. In this work we restrict ourselves to the case of uncorrelated assets,

when the only non-zero elements of covariance matrix lay on the diagonal, Kij =

(α2
i + σ2

i )δij . In this case the expression for typical rate becomes

vtyp =
N∑
i=1

[αiri − (σ2
i + α2

i )r
2
i /2] , (3.8)

without any restrictions the optimal investment fraction in a given asset is deter-

mined by a single asset formula (2.5)

r̃i
opt =

αi

σ2
i + α2

i

. (3.9)

In case of the general covariance matrix the above formula becomes

r̃i
opt =

∑
j

(K−1)ijαj , (3.10)

where (K−1)ij is an element of a matrix inverse to Kij . With somewhat heavier

algebra all results from the following paragraphs can be reformulated to include the

effects of a general covariance matrix and non-zero risk-free interest rate. However,

we will not attempt it in this paper.

The non-trivial part of the N asset case comes from the restriction
∑
ri ≤ 1,

ri ≥ 0. This restriction starts to be relevant if
∑
i r̃i

opt > 1, and the Eq. (3.9)

no longer works. In this case the optimal solution would be to invest the whole

capital in assets and to search for a maximum of vtyp restricted to the hyperplane∑
i ri = 1. This interesting case was not considered by Merton [3]. Therefore,

his prescription for the vector of optimal investment fractions holds only when∑
αi/σ

2
i ≤ 1. Introducing a Lagrange multiplier λ, one gets ropt

i = (αi − λ)/(α2
i +
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σ2
i ). Obviously, the assets for which ri < 0 should be dropped and the optimal ropt

i

are finally given by

ropt
i =

αi − λ
α2
i + σ2

i

θ

(
αi − λ
α2
i + σ2

i

)
, (3.11)

where θ(x) is a usual Heavyside step function. The Lagrange multiplier λ is found

by solving

N∑
i=1

αi − λ
α2
i + σ2

i

θ

(
αi − λ
α2
i + σ2

i

)
= 1 . (3.12)

To demonstrate how this optimization works in practice we consider the following

simple example. An investor has an alternative to invest his capital in three assets

with average returns α1 = 1.5%, α2 = 2%, α3 = 2.5%. Each of these assets

has the same volatility σ = 10%. Which are optimal investment fractions in this

case? Equation (3.9) recommends r̃1
opt = α1/(σ

2 + α2
1) ' α1/σ

2 = 1.5, r̃2
opt ' 2,

r̃3
opt ' 2.5. Each of these numbers is bigger than one, which means that given any

one of these assets as the only investment alternative, the investor would be advised

to trust his whole capital to it. As explained above, whenever Eq. (3.9) results in

r̃1
opt+r̃2

opt+r̃3
opt > 1, the investor should not keep any money in cash. We need to

solve Eq. (3.11) to determine how he should share his capital between three available

assets. Assuming first that each asset gets a non-zero fraction of the capital, one

writes Eq. (3.12) for the Lagrange multiplier λ: 1.5− λ + 2 − λ + 2.5 − λ = 1, or

λ = 5/3 ' 1.67. But then r1 = 1.5− λ is negative. This suggests that the average

return in asset 1 is too small, and that the whole capital should be divided between

assets 2 and 3. Then Eq. (3.12) 2 − λ + 2.5 − λ = 1 has the solution λ = 1.75,

and the optimal investment fractions are ropt
1 = 0, ropt

2 = 0.25, ropt
3 = 0.75. This

optimum represents the compromise between the following two tendencies. On the

one hand, diversification of the portfolio tends to increase its typical growth rate

and bring it closer to the average growth rate. This happens because fluctuations

of different asset’s prices partially cancel each other making the whole portfolio less

risky. On the other hand, to diversify the portfolio one has to use assets with α’s

smaller than that of the best asset in the group, and thus compromise the average

growth rate itself. In the above example the average return α1 was just too low to

justify including it in the portfolio.

Finally, we want to compare our results with the exact formula derived by

Breiman [8]. His argument goes as follows: in case where there is no bank (or it is

just included as the alternative of investing in a risk-free asset for which Λ = p and

σ = 0) one wants to maximize 〈ln
∑
rie

ηi〉 subject to the constraint
∑
ri = 1. In-

troducing a Lagrange multiplier β (different from Lagrange multiplier λ used above)

one gets a condition for an extremal value of growth rate: 〈eηi/
∑
rie

ηi〉 − β = 0.

This can also be written as 〈rieηi/
∑
rie

ηi〉−βri = 0. The summation over i shows

that β = 1, therefore at optimum is determined by a solution of the system of N
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equations:

ri =

〈
rie

ηi/
∑
j

rje
ηj

〉
. (3.13)

Notice that the ith equation automatically holds if ri = 0. Therefore, finding an

optimal set of investment fractions ri is equivalent to solving (3.13) with ri ≥ 0.

According to this equation in the strategy, optimal in Kelly’s sense, on average one

does not have to buy or sell assets since the average fraction of each asset’s capital

in the total capital (〈rieηi/
∑
rje

ηj 〉 ) is conserved by dynamics. Unfortunately, the

exact set of Eq. (3.13) is as unusable as it is elegant: it suggests no constructive way

to derive the set of optimal investment fractions from known asset’s average returns

and covariance matrix. In this sense our set of approximate Eq. (3.11) provides

an investor with a constructive method to iteratively determine the set of optimal

weights of different assets in the optimal portfolio.
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